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Abstract. We define a CP -sensitive asymmetry in the sfermion decays f̃ → f χ̃0
j � �̄ , f χ̃0

j q q̄, based on
triple product correlations between the momenta of the outgoing fermions. We study this asymmetry in the
MSSM with complex parameters. We show that the asymmetry is sensitive to the phases of the parameters
µ and M1. The leading contribution stems from the decay chain f̃ → f χ̃0

j → f χ̃0
1 Z → f χ̃0

1 � �̄ (f χ̃0
1 q q̄),

for which we obtain analytic formulae for the amplitude squared. The asymmetry can go up to 3% for
f̃ → f χ̃0

1 � �̄, and up to 20% for f̃ → f χ̃0
1 q q̄. We also estimate the rates necessary to measure

the asymmetry.

1 Introduction

In the standard model (SM) the source of CP -violation is
given by the phase in the Kobayashi–Maskawa matrix [1].
However, it has been argued that this source is not enough
to explain the observed baryon asymmetry of the universe
(see for example [2]) and new sources of CP -violation have
to be introduced. In the minimal supersymmetric exten-
sion of the SM (MSSM), several supersymmetric (SUSY)
breaking parameters and the higgsino mass parameter can
be complex.

The phases of the SUSY parameters are restricted by
the experimental upper limits on the electric dipole mo-
ments (EDMs) [3] of electron, neutron and the 199Hg and
205Tl atoms. The limiting bounds are |de| < 4.3×10−27e cm
[4], |dn| < 6.3×10−26 e cm [5], |dHg| < 2.1×10−28 e cm [6]
and |dTl| < 1.3 × 10−24 e cm [7], respectively. The general
consensus is that one of the following three conditions has
to be realized:
(i) the phases are severely suppressed [8, 9];
(ii) supersymmetric particles of the first two generations
are rather heavy, with masses of the order of a TeV [10];
(iii) there are strong cancellations between the different
SUSY contributions to the EDMs [11].

At one-loop level, for the electron EDM these are the
neutralino and chargino contributions, and for the neutron
EDM in addition also the gluino exchange contributes.
While the phase of µ is restricted, |ϕµ| � π/10, there is no
such restriction on the phase of M1 [12].

In order to clarify the situation an unambiguous deter-
mination of the SUSY phases is necessary. In particular, for
determining also the sign of the phases, measurements of
CP -sensitive observables are necessary. The SUSY phases
give rise to CP -odd (T -odd) observables already at tree

level [13–16]. An important class of such observables in-
volves triple product correlations [17,18]. They allow us to
define various CP -asymmetries which are sensitive to the
different CP -phases. These observables could be measured
at future linear collider experiments [19] and would allow
us to independently determine the values of the phases.

In this paper we consider a T -odd correlation in the de-
cays

f̃ → f χ̃0
j � �̄ , f χ̃0

j q q̄, (1)

with � = e, µ, τ , and q denotes a quark. The T -odd corre-
lation for the leptonic decay is defined as

O�
odd = pf · (p� × p�̄), (2)

and that for the hadronic decay as

Oq
odd = pf · (pq × pq̄), (3)

where p denotes the three-momentum of the correspond-
ing fermion. We define the corresponding T -odd asymme-
tries as

A�,q
T =

Γ (O�,q
odd > 0) − Γ (O�,q

odd < 0)

Γ (O�,q
odd > 0) + Γ (O�,q

odd < 0)

=

∫
sgn[O�,q

odd]
∣∣M�,q

∣∣2 dLips∫ |M�,q|2 dLips
, (4)

where M�,q is the matrix element for the decay (1). For
the measurement of A�

T or Aq
T it is necessary to be able to

distinguish between the charges of �+ and �− or q and q̄. In
the case � = e, µ, τ this should be possible experimentally
on an event by event basis at an e+e− linear collider [19].
Aq

T may be measurable in the case of q = c, b, where flavor
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Fig. 1. Schematic picture of the subsequent two-body decays
f̃ → fχ̃0

j , χ̃0
j → Zχ̃0

1, Z → ��̄ (qq̄) in the f̃ rest frame

reconstruction is possible [20]. However, this will only be
possible statistically for a given event sample.

The leading contribution to the triple products (2)
and (3) originates from the decay chain

f̃ → fχ̃0
j → fχ̃0

1 Z → fχ̃0
1 � �̄ (fχ̃0

1 q q̄), (5)

which is shown schematically in Fig. 1. Essentially, the
triple products (2) and (3) are correlations between the
χ̃0

j polarization and the Z boson polarization, which are
encoded in the momentum vectors of the final leptons or
quarks. The correlations would vanish, for example, if a
scalar particle in place of the Z boson is exchanged. Final
state interactions may also contribute to A�,q

T ; however,
they arise only at one-loop level. We expect that such con-
tributions are smaller than 10%, because only weak correc-
tions to the absorptive part of the χ̃0

j–Z–χ̃0
1 vertex have to

be included. In the similar case of the decay χ̃±
j → W±χ̃0

1,
corrections smaller than 10% have been obtained [21]. Cor-
rections of this order of magnitude have also been found
in [22], where next-to-leading order effects on polarization
observables within the SM have been studied.

As will be shown, the tree-level contribution to the triple
product correlations (2) and (3) are proportional to the
imaginary part of the χ̃0

j–Z–χ̃0
1 coupling squared and are

sensitive to the phases of the neutralino mass parameters
M1 and µ (see (25)– (34)). O�,q

odd is not sensitive to the
trilinear scalar coupling parameter Af of the sfermion f̃ .
The reason is that the first decay in the chain (5), f̃ → fχ0

j ,
is a two-body decay of a scalar particle. In order to be
sensitive to the phase of Af one would have to construct
instead of (2) and (3) a triple product correlation involving
the transverse polarization of the fermion f . In principle
this could be possible for f = τ, t [23], but this case will
not be considered here (for a similar case see [15]). The
T -odd correlation (2) was proposed in [16] and the size of
the asymmetry was calculated for the decay µ̃ → µ χ̃0

2 →
χ0

1 µ �+ �−; however, for a specific final state configuration
only. In the present paper we extend the work of [16] by
calculating the asymmetries (4) in the whole phase space.

In Sect. 2 we give the definitions and the matrix element
of the decay we are interested in. In Sect. 3 we perform the
calculation of the T -odd asymmetry. In Sect. 4 we present
our numerical results. Section 5 contains a short summary
and conclusion.

2 Definitions and formalism

2.1 Lagrangian and couplings

The parts of the interaction Lagrangian of the MSSM rel-
evant for decay (5) are (in our notation and conventions
we follow closely [24,25])

Lf̃fχ̃0
j

= f̃kf̄(bf̃
kjPL + af̃

kjPR)χ̃0
j + h.c. ,

j = 1, . . . , 4 , k = 1, 2 , (6)

where

af̃
kj = g

(
Rf̃

kn

)∗
Af

jn, bf̃
kj = g

(
Rf̃

kn

)∗
Bf

jn, (n = L, R)
(7)

A�,q
j =

(
f �,q

Lj

h�,q
Rj

)
, B�,q

j =

(
h�,q

Lj

f �,q
Rj

)
, (8)

with

h�
Lj =

(
h�

Rj

)∗
= Y�N

∗
j3,

f �
Lj = − 1√

2
(tanΘWNj1 + Nj2),

f �
Rj =

√
2 tanΘWN∗

j1, (9)

hu
Lj =

(
hu

Rj

)∗ = YuN∗
j4,

fu
Lj =

1√
2
(tanΘWNj2 + Nj1),

fu
Rj = −2

√
2

3
tanΘWN∗

j1, (10)

hd
Lj =

(
hd

Rj

)∗
= YdN

∗
j3,

fd
Lj = − 1√

2

(
1
3

tanΘWNj2 − Nj2

)
,

fd
Rj =

√
2

3
tanΘWN∗

j1, (11)

and

Y�,d =
m�,d√

2mW cos β
, Yu =

mu√
2mW sin β

. (12)

Here, PL,R = 1/2(1 ∓ γ5), g denotes the weak coupling
constant, ΘW is the weak mixing angle, mW is the mass
of the W boson and Rf̃

kn is the scalar fermion mixing ma-
trix defined below. m� and mu (md) is the mass of the
corresponding lepton and up-type (down-type) quark, re-
spectively. Nij is the complex unitary 4×4 matrix which di-
agonalizes the neutral gaugino–higgsino mass matrix Yαβ ,
N∗

iαYαβN∗
kβ = mχ̃0

i
δik, in the basis (B̃, W̃ 3, H̃0

1 , H̃0
2 ) [24].

The masses and couplings of the f̃k follow from the her-
mitian sfermion mass matrix which in the basis (f̃L, f̃R)
reads

Lf̃
M = −

(
f̃†

L, f̃†
R

)
M2

f̃LL
e−iϕf̃ |M2

f̃LR
|

eiϕf̃ |M2
f̃LR

| M2
f̃RR




f̃L

f̃R


 ,

(13)
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with

M2
f̃LL

= M2
Lf̃

+
(
If
3L − qf sin2 ΘW

)
cos 2βm2

Z + m2
f ,

(14)

M2
f̃RR

= M2
Rf̃

+ qf sin2 ΘW cos 2βm2
Z + m2

f , (15)

M2
f̃RL

=
(
M2

f̃LR

)∗
= mf

(
Af − µ∗(cot β)2If

3L

)
, (16)

ϕf̃ = arg
[
Af − µ∗(cot β)2If

3L

]
, (17)

where mZ is the mass of the Z boson, qf and If
3L,R is

the charge and the isospin of the fermion, respectively.
MLf̃ , MRf̃ , Af are the soft SUSY-breaking parameters

of the f̃i system. The f̃ mass eigenstates are
(
f̃1, f̃2

)
=(

f̃L, f̃R

)
Rf̃

T
with

Rτ̃ =


eiϕf̃ cos θf̃ sin θf̃

− sin θf̃ e−iϕf̃ cos θf̃


 , (18)

and

cos θf̃ =
−|M2

f̃LR
|√∣∣∣M2

f̃LR

∣∣∣2 +
(
m2

f̃1
− M2

f̃LL

)2
,

sin θf̃ =
M2

f̃LL
− m2

f̃1√∣∣∣M2
f̃LR

∣∣∣2 +
(
m2

f̃1
− M2

f̃LL

)2
. (19)

The mass eigenvalues are

m2
f̃1,2

(20)

=
1
2

((
M2

f̃LL
+ M2

f̃RR

)
∓
√(

M2
f̃LL

− M2
f̃RR

)2
+ 4

∣∣∣M2
f̃LR

∣∣∣2
)

.

The remaining parts of the interaction Lagrangian of the
MSSM relevant for the decay (5) are

LZχ̃0
i χ̃0

j
= Zµχ̃0

i γµ

(
O′′L

ij PL + O′′R
ij PR

)
χ̃0

j , (21)

i, j = 1, . . . , 4 ,

and
LZff̄ = Zµf̄γµ(LfPL + RfPR)f , (22)

respectively, where

O′′L
ij =

g

4 cos ΘW

(
Ni4N

∗
j4 − Ni3N

∗
j3
)

,

O′′R
ij = −O′′L

ij

∗
, (23)

Lf (Rf ) = − g

cos ΘW

(
If
3L(R) − qf sin2 ΘW

)
. (24)

Note that our definition of O′′L,R
ij (Lf , Rf ) differs from

that given in [24] by a factor g/2 cos ΘW (g/ cos ΘW).

2.2 Spin-density matrix formalism

For the calculation of the amplitude squared of the subse-
quent two-body decays (5) of the sfermion, we use the spin-
density matrix formalism [26,27]. The amplitude squared
is given by

|M|2 =
∣∣∆ (χ̃0

j

)∣∣2 |∆(Z)|2

×
∑

λi,λ′
i,λk,λ′

k

(ρD1)λiλ′
i

(ρD2)
λ′

iλi

λkλ′
k

(ρD3)
λ′

kλk , (25)

with the propagators ∆
(
χ̃0

j

)
= 1/[p2

χj
− m2

χj
+ imχj Γχj ]

and ∆(Z) = 1/[p2
Z − m2

Z + imZΓZ ]. Here, pχj , mχj , Γχj

(pZ , mZ , ΓZ) are the four-momenta, masses and widths
of the decaying neutralino (Z boson), respectively. The
amplitude squared is composed of the unnormalized spin-
density matrices ρD1 , ρD2 and ρD3 of the decay (5), which
carry the helicity indices λi, λ

′
i of the neutralinos and/or

the helicity indices λk, λ′
k of the Z boson. Introducing a set

of polarization basis four-vectors sa
χj

(a = 1, 2, 3) for the
neutralino χ̃0

j , which fulfill the orthonormality relations
sa

χj
· sb

χj
= −δab and sa

χj
· pχj = 0, the density matrices

can be expanded in terms of the Pauli matrices:

(ρD1)λiλ′
i

= δλiλ′
i

D1 + σa
λiλ′

i
Σa

D1
, (26)

(ρD2)
λ′

i,λi

λk,λ′
k

=
[
δλ′

iλi
Dµν

2 + σb
λ′

iλi
Σbµν

D2

]
ελk∗

µ ε
λ′

k
ν , (27)

(ρD3)
λ′

kλk = Dρσ
3 ε

λ′
k∗

σ ελk
ρ . (28)

The polarization vectors ελk
µ of the Z boson obey pµ

Zελk
µ = 0

and the completeness relation
∑

λk
ελk∗

µ ελk
ν = −gµν +

pZµpZν/m2
Z . The expansion coefficients of the density ma-

trices (26)– (28) are

D1 =
(∣∣∣af̃

kj

∣∣∣2 +
∣∣∣bf̃

kj

∣∣∣2)(pf ′ · pχj

)
, (29)

Σa
D1

= mχj

(∣∣∣bf̃
kj

∣∣∣2 −
∣∣∣af̃

kj

∣∣∣2)(pf ′ · sa
χj

)
, (30)

D2ρσ = 4gρσ

[
2 Re

(
O′′L

1j O′′R
1j

∗)
mχ1mχj

−
(∣∣O′′L

1j

∣∣2 +
∣∣O′′R

1j

∣∣2) (pχ1 · pχj

)]
(31)

+ 4
(∣∣O′′L

1j

∣∣2 +
∣∣O′′R

1j

∣∣2) (pχjρpχ1σ + pχj σ
pχ1ρ

)
,

Σa
D2ρσ = i 8 mχ1Im

(
O′′L

1j O′′R
1j

∗)(
pχjρ sa

χjσ − pχjσ sa
χjρ

)
+ i 4 ερσµν pµ

χ1
saν

χj
mχj

(∣∣O′′L
1j

∣∣2 +
∣∣O′′R

1j

∣∣2)
− i 8 ερσµν pµ

χj
saν

χj
mχ1Re

(
O′′L

1j O′′R
1j

∗)
, (32)

Dρσ
3 = −2 gρσ

(
L2

f + R2
f

)
(pf · pf̄ )

+ 2
(
pρ

f pσ
f̄ + pρ

f̄
pσ

f

) (
L2

f + R2
f

)
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+ i 2
(
R2

f − L2
f

)
ερσµν pfµ pf̄ν , (33)

with ε0123 = 1 and mχ1 the mass of the lightest super-
symmetric particle (LSP). The masses of the fermions
f = e, µ, τ, c, b are set to zero. In (29) and (30) f ′ denotes
the fermion stemming from the first decay in (5). Insert-
ing the density matrices (26)– (28) in (25), the amplitude
squared is given by

|M|2 = 2
∣∣∆ (χ̃0

j

)∣∣2 |∆(Z)|2 {D1 D2ρσ+Σa
D1

Σa
D2ρσ}Dρσ

3 .
(34)

3 T -odd asymmetry

In the following we present in some detail the calculation
of the T -odd asymmetry in (4) for the slepton decays �̃ →
�χ̃0

j → �χ̃0
1 Z → �χ̃0

1 f f̄ . The replacements which must be
made for the asymmetry in the case of q̃ decays are obvious.

In the rest frame of �̃, the coordinate system is defined
such that the momentum four-vectors are given by

pZ = (EZ , 0, 0, |pZ |),
pχj

=
∣∣pχj

∣∣ (Eχj /
∣∣pχj

∣∣ , sin θ1, 0, cos θ1), (35)

pf̄ =
∣∣pf̄

∣∣ (Ef̄/
∣∣pf̄

∣∣ , sin θ2 cos φ2, sin θ2 sin φ2, cos θ2
)

,

where

∣∣pχj

∣∣ = m2
�̃

− m2
χj

2 m�̃

,
∣∣pf̄

∣∣ = m2
Z

2(EZ − |pZ | cos θ2)
,

(36)
and

∣∣p±
Z

∣∣ =
[(

m2
χj

+ m2
Z − m2

χ1

) ∣∣pχj

∣∣ cos θ1

± Eχj

√
λ
(
m2

χj
, m2

Z , m2
χ1

)
− 4

∣∣pχj

∣∣2 m2
Z (1 − cos2 θ1)

]
/[

2
∣∣pχj

∣∣2 (1 − cos2 θ1
)

+ 2m2
χj

]
, (37)

with λ(x, y, z) = x2 +y2 +z2 −2 (xy + xz + yz). There are
two solutions |p±

Z | in the case |p0
χj

| < |pχj |, where |p0
χj

| =√
λ
(
m2

χj
, m2

Z , m2
χ1

)
/2mZ is the neutralino momentum if

the Z boson is produced at rest. The Z decay angle θ1 is
constrained in that case and the maximal angle θmax

1 is
given by

sin θmax
1 =

|p0
χj

|
|pχj |

=
m�̃

mZ

λ
1
2

(
m2

χj
, m2

Z , m2
χ1

)
(
m2

�̃
− m2

χj

) ≤ 1 . (38)

If |p0
χj

| > |pχj
|, the decay angle θ1 is not constrained and

there is only the physical solution |p+
Z | left.

The spin basis vectors of χ̃0
j in the �̃ rest frame are

chosen by

s1
χj

=
(

0,
s2 × s3

|s2 × s3|
)

, s2
χj

=
(

0,
pχj

× pZ

|pχj × pZ |
)

,

s3
χj

=
1

mχj

(|pχj
|, Eχj p̂χj

)
, (39)

with p̂χj
= pχj

/|pχj
|. Together with pµ

χj
/mχj

, the spin
basis vectors form an orthonormal set.

The Lorentz invariant phase space element for the decay
chain �̃ → � χ̃0

j → � χ̃0
1 Z → � χ̃0

1 f f̄ , in the rest frame of
�̃, can be written as

dLips
(
m2

�̃
, p�, pχ1 , pf̄ , pf

)
=

1
(2π)2

dLips
(
m2

�̃
, p�, pχj

)
dsD2 (40)

×
∑
±

dLips
(
sD2 , pχ1 , p

±
Z

)
dsD3dLips(sD3 , pf̄ , pf ) ,

where sD2 = p2
χj

and sD3 = p2
Z . The Lorentz invariant

phase space elements of the sequence of two-body de-
cays read

dLips
(
m2

�̃
, p�, pχj

)
=

1
8(2π)2

(
1 − m2

χj

m2
�̃

)
dΩ , (41)

dLips
(
sD2 , pχ1 , p

±
Z

)
=

1
4(2π)2

∣∣p±
Z

∣∣2
|E±

Z |pχj | cos θ1 − Eχj |p±
Z || dΩ1 , (42)

dLips(sD3 , pf̄ , pf ) =
1

8(2π)2
m2

Z(
E±

Z − |p±
Z | cos θ2

)2 dΩ2 ,

(43)

where dΩi = sin θi dθi dφi.
The partial �̃ decay width for the decay chain (5) is

given by

Γ
(
�̃ → � χ̃0

1 f f̄
)

=
1

2m�̃

∫
|M|2dLips

(
m2

�̃
, p�, pχ1 , pf̄ , pf

)
. (44)

We use the narrow width approximation for the propaga-
tors ∆(χ̃0

j ) and ∆(Z):∫
|∆ (χ̃0

j

) |2dsD2 =
π

mχj Γχj

,

∫
|∆(Z)|2dsD3 =

π
mZΓZ

.

The approximation for the neutralino propagator is jus-

tified for
(

Γχj

mχj

)2
� 1, which holds in our case with

Γχj
� O(GeV).
From (4) and (34) we obtain for the asymmetry

A�,q
T = (45)
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∫ ∣∣∆ (χ̃0
j

)∣∣2 |∆(Z)|2 sgn[O�,q
odd]Σa

D1
Σa

D2ρσDρσ
3 dLips∫ ∣∣∆ (χ̃0

j

)∣∣2 |∆(Z)|2 D1 D2ρσDρσ
3 dLips

,

where in the derivation of this expression we have used∫ ∣∣∆ (χ̃0
j

)∣∣2 |∆(Z)|2 sgn[O�,q
odd]D1 D2ρσDρσ

3 dLips = 0 in the

numerator and
∫ ∣∣∆ (χ̃0

j

)∣∣2 |∆(Z)|2 Σa
D1

Σa
D2ρσDρσ

3
×dLips = 0 in the denominator. As can be seen from (45),
the asymmetry A�,q

T is proportional to the spin correla-
tion terms Σa

D1
Σa

D2ρσDρσ
3 . In the spin correlations only

the term which contains the T -odd correlation O�,q
odd, (2)

and (3), contributes to A�,q
T .

The T -odd correlation O�,q
odd is contained in the product

of the first term of (32) and the last term of (33), which
leads to

Σa
D2ρσDρσ

3 ⊃ −32 mχ1Im
(
O′′L

1j O′′R
1j

∗)
(R2

f − L2
f )

×ερσµν pχjρ sa
χjσ pfµ pf̄ν . (46)

In the rest frame of �̃, (p� · sa
χj

) = 0 for a = 1, 2; hence,
Σ1,2

D1
= 0 in (30) and only Σ3

D2ρσ, defined in (32), con-
tributes to the spin correlation terms in the total am-
plitude squared. Using the explicit representation of the
fermion momentum vector, (35), and the neutralino spin
vector, (39), the term with the ε-tensor in (46) can be
written as

ερσµν pχjρ s3
χjσ pfµ pf̄ν

= −mχj p̂� · (pf × pf̄ )

= −mχj |pZ | |pf̄ | sin θ1 sin θ2 sin φ2 , (47)

where p̂� = p�/|p�|. Since 0 ≤ θ1, θ2 ≤ π the sign of
the correlation p� · (pf ×pf̄ ) is given by the sign of sinφ2.
Thus Oodd > 0 corresponds to an integration

∫ π
0 dφ2, while

Oodd < 0 corresponds to an integration
∫ 2π

π dφ2. We there-
fore integrate in (44) over the entire phase space except over
the angle φ2. The T -odd asymmetry can then be written as

Af
T =

[∫ π
0

dΓ
dφ2

− ∫ 2π
π

dΓ
dφ2

]
dφ2[∫ π

0
dΓ
dφ2

+
∫ 2π

π
dΓ
dφ2

]
dφ2

. (48)

The dependence of Af
T on the �̃k–�–χ̃0

j couplings a�̃
kj , b

�̃
kj , on

the Z–f̄–f couplings Lf , Rf and on the Z–χ̃0
1–χ̃0

j couplings
O′′L,R

1j is given by

Af
T ∝

∣∣∣a�̃
kj

∣∣∣2 −
∣∣∣b�̃

kj

∣∣∣2∣∣∣a�̃
kj

∣∣∣2 +
∣∣∣b�̃

kj

∣∣∣2
L2

f − R2
f

L2
f + R2

f

Im
(
O′′L

1j O′′R
1j

∗)
, (49)

which follows from (45) and (46). Due to the first factor
∣
∣
∣a�̃

kj

∣
∣
∣

2−
∣
∣
∣b�̃

kj

∣
∣
∣

2

|a�̃
kj|2+|b�̃

kj|2 , the asymmetry Af
T will be strongly suppressed

for the case |a�̃
kj | ≈ |b�̃

kj | and maximally enhanced in the

case of vanishing mixing in the slepton sector

∣
∣
∣a�̃

kj

∣
∣
∣

2−
∣
∣
∣b�̃

kj

∣
∣
∣

2

|a�̃
kj|2+|b�̃

kj|2 ≈

±1. Due to the second factor, L2
f −R2

f

L2
f +R2

f
, Ab(c)

T is larger than

A�
T , with

Ab(c)
T =

L2
� + R2

�

L2
� − R2

�

L2
b(c) − R2

b(c)

L2
b(c) + R2

b(c)
A�

T 	 6.3 (4.5)×A�
T . (50)

Note that the RHS of (46), and therefore the asymmetry
in (4), vanishes for mχ1 → 0, which is related to the fact
that it is possible to redefine the Weyl spinor χ1 → eiαχ1
in this limit.

4 Numerical results

We present numerical results for the T -odd asymmetry
A�

T defined in (4). The values for Ab,c
T may be obtained

from (50). We analyze numerically the decay chain τ̃ →
τ χ̃0

j → τ χ̃0
1 Z → τ χ̃0

1 � �̄, � = e, µ, τ where χ̃0
1 is the

lightest supersymmetric particle (LSP). We assume that
τ̃1 is the lightest sfermion and that the decays into a real
χ̃0

j , j = 2, 3, and a real Z are kinematically possible. In the
numerical study below we will treat the two cases τ̃1 → τ χ̃0

2

and τ̃1 → τ χ̃0
3 separately. The asymmetry A�,q

T in (4) could
in principle also be studied in χ̃0

j three-body decays if the
two-body decays are kinematically forbidden [13], which
will be treated elsewhere [28].

The relevant MSSM parameters are |µ|, ϕµ, |M1|, ϕM1 ,
M2, tanβ, |Aτ |, ϕAτ , mτ̃1 , mτ̃2 , and the Higgs mass pa-
rameter mA. For all scenarios we keep tan β = 10, |Aτ | =
1000 GeV, ϕAτ = 0, mτ̃1 = 300 GeV, mτ̃2 = 800 GeV
and use the GUT relation |M1| = 5/3 tan2 ΘWM2 in or-
der to reduce the number of free parameters. We have
checked that our results do not depend sensitively on this
choice. We choose mA = 800 GeV to rule out decays of the
neutralino into charginos and the charged Higgs bosons
χ̃0

j 
→ χ̃±
i H∓, i = 1, 2, as well as decays into the heavy

neutral Higgs bosons χ̃0
j 
→ χ̃0

i H0
2,3. For the calculation of

the branching ratios BR(τ̃1 → τ χ̃0
j ) and BR(χ̃0

j → Zχ̃0
1),

we take into account also the decays τ̃1 → χ̃−
j ντ , χ̃0

j →
H0

1 χ̃0
1, W

±χ̃∓
1 in addition to τ̃1 → χ̃0

jτ, χ̃
0
j → Zχ̃0

1. H0
1 is

the lightest neutral Higgs boson, which in general is not
a CP -eigenstate [29–31]. The decay τ̃1 → τ� �̃, � = e, µ
is kinematically forbidden due to our assumption that τ̃1
is the lightest sfermion. Other decay chains leading to the
same final state are less important and will be neglected.

4.1 Decay chain via χ̃0
2

First we consider A�
T for the decay chain τ̃1 → τ χ̃0

2 →
τZ χ̃0

1 → τ χ̃0
1� �̄, for � = e, µ, τ . In Fig. 2a we show the

contour lines for the branching ratio BR(τ1 → τ χ̃0
1 � �̄) =

BR(τ̃1 → τ χ̃0
2) × BR(χ̃0

2 → Zχ̃0
1) × BR(Z → � �̄) in

the M2–|µ| plane for ϕM1 = π/2 and ϕµ = 0. Small val-
ues of the phase of µ are suggested by constraints on the
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a b

Fig. 2a,b. Contour lines of the branching ratio for τ̃1 → χ̃0
1τ��̄ and asymmetry A�

T defined in (4) in the M2–µ plane for
ϕM1 = π/2 and ϕµ = 0, taking tan β = 10, Aτ = 1000 GeV, mτ̃1 = 300 GeV, mτ̃2 = 800 GeV for MẼ > ML̃. The grey areas are
kinematically forbidden since here mτ̃1 < mχ0

2
+ mτ (light grey) or mχ0

2
< mχ0

1
+ mZ (dark grey)

EDMs for a typical SUSY scale of the order of a few
100 GeV [12]. For BR(τ1 → τ χ̃0

1 � �̄) we always sum
over the lepton–anti-lepton pairs which couple to the Z.
The grey areas in Fig. 2 are kinematically forbidden since
here mτ̃1 < mχ0

2
+ mτ (light grey) or mχ0

2
< mχ0

1
+ mZ

(dark grey). We choose MẼ > ML̃ since in this case the
τ̃1–τ–χ̃0

2 coupling |aτ̃
12| is larger, which implies a larger

branching ratio BR(τ̃1 → τ χ̃0
2) than for MẼ < ML̃.

(We use the usual notation MẼ ≡ MRτ̃ , ML̃ ≡ MLτ̃ ;
see (14) and (15).) MẼ > ML̃ is suggested in some sce-
narios with non-universal scalar mass parameters at the
GUT scale [32]. Furthermore, in (14) and (15) one could
have Mτ̃LL

< Mτ̃RR
in extended models with additional

D-terms [33]. In a large region of the parameter space we
have BR(χ̃0

2 → Zχ̃0
1) = 1, and we take BR(Z → � �̄) = 0.1.

The corresponding asymmetry A�
T is shown in Fig. 2b. The

dependence of A�
T on M2 and |µ| is dominantly determined

by Im(O′′L
12 O′′R

12
∗).

In Fig. 3 we show the ϕM1 and ϕµ dependence of
BR(τ̃1 → τ χ0

1 � �̄) and of A�
T in the full range of the

phases for |µ| = 300 GeV and M2 = 280 GeV. We display
in Table 1 the masses of χ̃0

i , i = 1, . . . , 4 and the total
widths Γχ̃2 , Γτ̃1 for various values of the phases. The value
of A�

T depends stronger on ϕM1 , which also determines the
sign of A�

T , than on ϕµ.

Based on our results on the asymmetry A�
T in τ̃1 →

τ χ̃0
2 → χ̃0

1τ�+�− and the branching ratio we give a theoret-
ical estimate of the number of produced τ̃1’s necessary to
observe the T -odd asymmetry in (4). The relevant quan-
tity to decide whether A�

T is observable (at 1σ), is given by
((A�

T )2 ×BR)−1, where BR stands for the branching ratio
of the decay considered. The necessary number of produced

Table 1. Masses of χ̃0
i , i = 1, . . . , 4 and widths Γχ̃2 , Γτ̃1 for var-

ious phase combinations of ϕµ and ϕM1 , taking |µ| = 300 GeV
and M2 = 280 GeV, tan β = 10, Aτ = 1000 GeV, mτ̃1 =
300 GeV, mτ̃2 = 800 GeV for MẼ > ML̃

ϕµ ϕM1 mχ̃1 , mχ̃2 , mχ̃3 , mχ̃4 [GeV] Γχ̃2 [MeV] Γτ̃1 [MeV]

0 0 135, 234, 306, 358 4.06 527
0 π

2 137, 233, 308, 357 1.79 550
0 π 138, 231, 309, 356 0.09 573
π
2 0 137, 239, 307, 353 5.43 487
π
2

π
2 138, 238, 309, 352 2.89 511

π
2 π 137, 237, 311, 351 1.49 529

π 0 138, 245, 309, 347 7.25 448
π π

2 137, 244, 311, 346 5.78 466
π π 136, 243, 313, 345 4.32 484

τ̃1’s should then be � ((A�
T )2 × BR)−1. As an example we

take the point denoted by • in Fig. 3, with ϕµ = π/2 and
ϕM1 = π/2. For this point BR ≈ 2.5 × 10−2 and |A�

T | ≈
3×10−2 which implies that ((A�

T )2×BR)−1 ≈ 4.4×105. For
the decay τ̃1 → bb̄χ̃0

1τ , on the other hand, BR ≈ 3.6×10−2

and |Ab
T | ≈ 1.9×10−1, so that ((Ab

T )2×BR)−1 ≈ 7.7×102.
For comparison we consider a further example with smaller
CP -violating phases ϕµ = 0 and ϕM1 = −0.3π (denoted
by ⊗ in Fig. 3). Also in this case we obtain almost the same
results for ((A�,b

T )2 × BR)−1. In these two examples, the
asymmetry A�,q

T should be measurable at an e+e− linear
collider with

√
s = 800 GeV and an integrated luminosity

of 500 fb−1 for mτ̃1 = 300 GeV. It is clear that detailed
Monte Carlo studies taking into account background and
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a b

Fig. 3a,b. Contour lines of the branching ratio for τ̃1 → χ̃0
1τ��̄ and asymmetry A�

T defined in (4) in the ϕM1–ϕµ plane for
|µ| = 300 GeV and M2 = 280 GeV, taking tan β = 10, Aτ = 1000 GeV, mτ̃1 = 300 GeV, mτ̃2 = 800 GeV for MẼ > ML̃. The
points denoted by • and ⊗, respectively, are for the theoretical estimate of the necessary number of produced τ̃1’s (see text)

detector simulations are necessary to get a more precise
prediction of the expected accuracy. However, this is be-
yond the scope of the present paper. For a Monte Carlo
study on a T -odd observable in neutralino production and
decay, see [34].

4.2 Decay chain via χ̃0
3

Next we discuss the decay chain τ̃1 → τ χ̃0
3 → τZ χ̃0

1 →
τ χ̃0

1� �̄. The two decays τ̃1 → τ χ̃0
2 and τ̃1 → τ χ̃0

3 can
be distinguished by measuring the τ energy in the τ̃1 rest
frame. In Fig. 4a we show the contour lines for the branch-
ing ratio BR(τ1 → τ χ̃0

1 � �̄) = BR(τ̃1 → τ χ̃0
3)×BR(χ̃0

3 →
Zχ̃0

1) × BR(Z → � �̄) in the M2–|µ| plane for ϕM1 = π/2
and ϕµ = 0. The area A (B) is kinematically forbidden
since mχ̃0

3
< mχ̃0

1
+ mZ (mτ̃1 < mχ̃0

3
+ mτ ). The grey area

is excluded since mχ±
1

< 104 GeV. We choose MẼ < ML̃

since the τ̃1–τ–χ̃0
3 coupling |aτ̃

13| is larger, which implies a
larger branching ratio BR(τ̃1 → τ χ̃0

3) than for MẼ > ML̃.
The total branching ratio is smaller than for the previous
decay chain since BR(τ̃1 → τ χ̃0

3) < .75(0.05) in the upper
(lower) part of Fig. 4a.

The corresponding asymmetry A�
T is shown in Fig. 4b.

The asymmetry A�
T vanishes on contours where either

|aτ̃
13| = |bτ̃

13| or Im(O′′L
13 O′′R

13
∗) = 0; see (49). On the one

hand, along the contour line 0 in the lower part of Fig. 4b
we have |aτ̃

13| = |bτ̃
13|. On the other hand, along the contour

line 0 in the upper part of Fig. 4b we have Im(O′′L
13 O′′R

13
∗) =

0. Furthermore, between the upper and the lower part
of Fig. 4b (area A), there is a further sign change of
Im(O′′L

13 O′′R
13

∗). Concerning the first factor in (49), we re-
mark that it increases for increasing M2 and decreasing

Table 2. Masses of χ̃0
i , i = 1, . . . , 4 and widths Γχ̃3 , Γτ̃1 for var-

ious phase combinations of ϕµ and ϕM1 , taking |µ| = 150 GeV
and M2 = 450 GeV, tan β = 10, Aτ = 1000 GeV, mτ̃1 =
300 GeV, mτ̃2 = 800 GeV for MẼ < ML̃

ϕµ ϕM1 mχ̃1 , mχ̃2 , mχ̃3 , mχ̃4 [GeV] Γχ̃3 [MeV] Γτ̃1 [MeV]
0 0 128, 156, 238, 467 59.0 362
0 π

2 132, 153, 238, 466 68.2 359
0 π 141, 145, 238, 466 75.5 356
π
2 0 131, 158, 237, 466 41.5 356
π
2

π
2 136, 154, 237, 466 49.4 353

π
2 π 142, 145, 240, 465 73.8 360
π 0 135, 159, 236, 465 27.7 351
π π

2 137, 154, 239, 465 47.5 357
π π 143, 144, 242, 464 71.0 364

|µ|. This behavior can be understood by observing that for
|µ|/M2 → 0 the gaugino component of χ̃0

3 gets enhanced,
resulting in |bτ̃

13|/|aτ̃
13| → 0.

In Fig. 5 we show the dependence of BR(τ1 → τ χ0
1 � �̄)

and of A�
T on the phases ϕM1 and ϕµ, fixing |µ| = 150 GeV

and M2 = 450 GeV. For these parameters we display in
Table 2 the masses of χ̃0

i , i = 1, . . . , 4 and the total widths
Γχ̃3 , Γτ̃1 for various phase combinations. Note thatmaximal
CP -violating phases ϕµ, ϕM1 = ±π/2 do not necessarily
lead to the highest value of A�

T due to the complex interplay
of the phases in Im(O′′L

13 O′′R
13

∗). The value of A�
T depends

stronger on ϕM1 , which also determines the sign of A�
T ,

than on ϕµ. Comparing Fig. 3b and Fig. 5b, one can see that
both figures have in common the strong ϕM1 dependence,
where in a good approximation the sign of A�

T is sgn(A�
T ) ≈
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a b

Fig. 4a,b. Contour lines of the branching ratio for τ̃1 → χ̃0
1τ��̄ and asymmetry A�

T defined in (4) in the M2–µ plane for
ϕM1 = π/2 and ϕµ = 0, tan β = 10, Aτ = 1000 GeV, mτ̃1 = 300 GeV, mτ̃2 = 800 GeV for MẼ < ML̃. The area A (B) is
kinematically forbidden since mχ̃0

3
< mχ̃0

1
+ mZ (mτ̃1 < mχ̃0

3
+ mτ ). The grey area is excluded since m

χ±
1

< 104 GeV

a b

Fig. 5a,b. Contour lines of the branching ratio for τ̃1 → χ̃0
1τ��̄ and asymmetry A�

T defined in (4) in the ϕM1–ϕµ plane for
|µ| = 150 GeV and M2 = 450 GeV, taking tan β = 10, Aτ = 1000 GeV, mτ̃1 = 300 GeV, mτ̃2 = 800 GeV for MẼ < ML̃

sgn(ϕM1) in Fig. 3b and sgn(A�
T ) ≈ −sgn(ϕM1) in Fig. 5b.

This difference can be traced back to the different behavior
of Im(O′′L

12 O′′R
12

∗) and Im(O′′L
13 O′′R

13
∗). Moreover, in Fig. 5b

two points of level crossing appear at approximately ϕM1 ≈
±0.95π, ϕµ ≈ ±0.7π.

5 Summary and conclusion

We have considered a T -odd correlation and the corre-
sponding asymmetry in the sequential decay f̃ → f ′ χ̃0

j →
f ′ χ̃0

1 Z → f ′ χ̃0
1 ff̄ . The analytical expressions have been

given in the density matrix formalism. The contribution to
the T -odd correlation is induced by possible CP -violating
phases in the neutralino sector.



A. Bartl et al.: T -odd correlations in the decay of scalar fermions 441

In a numerical study of the decay τ̃1 → τχ0
1 ff̄ we

have shown that the T -odd asymmetry considered can be
of the order of a few percent for leptonic final states. The
number of produced τ̃ ’s necessary to observe A�

T is at least
of the order 105, which may be accessible at future collider
experiments. For a semi-leptonic final state like χ̃0

1 τ b̄b the
T -odd asymmetry is larger by a factor 6.3. If the T -odd
asymmetry Ab

T of such a semi-leptonic final state could be
measured with similar accuracy the number of produced
τ̃ ’s necessary to observe Ab

T is of the order 103.
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